Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Sci (China) ; 142: 236-247, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38527889

RESUMEN

The response patterns of microbial functional genes involved in biogeochemical cycles to cadaver decay is a central topic of recent environmental sciences. However, the response mechanisms and pathways of the functional genes associated with the carbon (C) and nitrogen (N) cycling to cadaveric substances such as cadaverine and putrescine remain unclear. This study explored the variation of functional genes associated with C fixation, C degradation and N cycling and their influencing factors under cadaverine, putrescine and mixed treatments. Our results showed only putrescine significantly increased the alpha diversity of C fixation genes, while reducing the alpha diversity of N cycling genes in sediment. For the C cycling, the mixed treatment significantly decreased the total abundance of reductive acetyl-CoA pathway genes (i.e., acsB and acsE) and lig gene linked to lignin degradation in water, while only significantly increasing the hydroxypropionate-hydroxybutylate cycle (i.e., accA) gene abundance in sediment. For the N cycling, mixed treatment significantly decreased the abundance of the nitrification (i.e., amoB), denitrification (i.e., nirS3) genes in water and the assimilation pathway gene (i.e., gdhA) in sediment. Environmental factors (i.e., total carbon and total nitrogen) were all negatively associated with the genes of C and N cycling. Therefore, cadaverine and putrescine exposure may inhibit the pathway in C fixation and N cycling, while promoting C degradation. These findings can offer some new insight for the management of amine pollution caused by animal cadavers.


Asunto(s)
Carbono , Putrescina , Humanos , Animales , Cadaverina , Agua , Ríos/química , Sedimentos Geológicos/química , Ciclo del Nitrógeno , Nitrógeno
2.
Environ Res ; 225: 115653, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36898422

RESUMEN

Corpse decomposition is of great significance to the carbon cycle of natural ecosystem. Carbon fixation is a carbon conversion process that converts carbon dioxide into organic carbon, which greatly contributes to carbon emission reduction. However, the effects of wild animal carcass decay on carbon-fixing microbes in grassland soil environment are still unknown. In this research, thirty wild mammal (Ochotona curzoniae) corpses were placed on alpine meadow soil to study the carbon storage and carbon-fixing microbiota succession for a 94-day decomposition using next-generation sequencing. Our results revealed that 1) the concentration of total carbon increased approximately 2.24-11.22% in the corpse group. 2) Several carbon-fixing bacterial species (Calothrix parietina, Ancylobacter rudongensis, Rhodopseudomonas palustris) may predict the concentration of total carbon. 3) Animal cadaver degradation caused the differentiation of carbon-fixing microbiota structures during succession and made the medium-stage networks of carbon-fixing microbes more complicated. 4) The temporal turnover rate in the experimental groups was higher than that in the control groups, indicating a quick change of gravesoil carbon-fixing microbiota. 5) The deterministic process dominates the assembly mechanism of experimental groups (ranging from 53.42% to 94.94%), which reflects that the carbon-fixing microbial community in gravesoil can be regulated. Under global climate change, this study provides a new perspective for understanding the effects of wild animal carcass decay on soil carbon storage and carbon-fixing microbes.


Asunto(s)
Pradera , Microbiota , Animales , Suelo/química , Microbiología del Suelo , Cadáver , Mamíferos
3.
J Environ Manage ; 320: 115944, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35963071

RESUMEN

Animal carcass decay produces many poisonous metabolites and chemical pollutants, which pose potential ecological risks to the aquatic environment and human health. However, the effects of animal cadaver decomposition on high-risk antibiotic resistance genes (ARGs) and potential pathogens in different water types are still unknown. In this study, fifteen freshwater economic fish (Carassius auratus) corpses were put into three types of water (i.e., pond water, tap water, and domestic sewage) for a 100-day decomposition. Next generation sequencing and HT-qPCR were used to illustrate how corpse decomposition affected microbial communities and ARG profiles. Our results revealed that fish corpse degradation caused similar resistomes and microbiome in different water types. MLSB (Macrolide-Lincosamide-Streptogramin B), ß-lactamase, sulfonamide, tetracycline resistance genes and transposase genes in the experimental groups were increased. Among them, tetracycline resistance genes were enriched by 224 to 136,218-fold during the process of corpse degradation. Furthermore, high-risk ARGs (ermB, floR and dfrA1), which resist to MLSB, multidrug and sulfonamide respectively, were significantly enriched in the cadaver groups and had co-occurrence patterns with opportunistic pathogens, such as Bacteroidetes, which was more than 37 times in carcass groups than that in control groups. The study is able to draw a general conclusion that cadaver decomposition of freshwater economic fish deteriorates the aquatic environment by affecting high-risk ARGs and pathogenic microorganisms regardless of water types, which poses potential threats to human health. Therefore, timely management and treatment of animal carcasses is of great significance to the protection of water environment.


Asunto(s)
Antibacterianos , Genes Bacterianos , Animales , Antibacterianos/análisis , Cadáver , Farmacorresistencia Microbiana/genética , Peces/genética , Agua Dulce/análisis , Humanos , Sulfonamidas , Tetraciclina , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...